Redistribution of pump power and impairments in gain-equalized distributed fiber Raman amplifiers due to four-wave mixing and parametric amplification
نویسندگان
چکیده
In this work, by using a comprehensive numerical model which rigorously describes the interaction between stimulated Raman scattering (SRS) and four-wave mixing (FWM), we verify that FWM processes, including depletion and parametric gain, generate a redistribution of pump power in distributed fiber Raman amplifiers (DFRAs). As a consequence of pump–pump FWM, several FWM components can be generated, which act as new sources of SRS for Raman pumping. Due to new SRS–FWM interactions, a redistribution and exchange of pump power along the fiber also occurs, producing degradation in the performance of the amplifier. Numerical results show impairments in distributed amplified systems due to these interactions, such as loss of flatness on the spectral gain, reduction on the net Raman gain, and the presence of strong FWM products within the transmission band. We note that the localization of the zero dispersion wavelength (λZD) of the fiber is a critical factor in the occurrence of these impairments. A reduction of net Raman gain up to 3 dB and tilt up to 7 dB in the spectral gain profile have been found in different amplified systems as consequence of pump–pump FWM and parametric gain of Raman pumps.
منابع مشابه
Impairments in GainEqualized Distributed Fiber Raman Amplifiers due to FourWave Mixing and Parametric Amplification Processes
In this work, by means of numerical simulations, we verify that four-wave mixing (FWM) processes, including depletion and parametric gain, generate a redistribution of pump power in distributed fiber Raman amplifiers (DFRAs). As a consequence of pump-pump FWM, FWM products are generated, as well as a power exchange between pumps, which produces degradation in the performance of the amplifier du...
متن کاملInvestigation of Scalar Modulation Instability in the Presence of Raman Scattering in Photonic Crystal Fibers
In this paper, by including Raman scattering in the coupled-mode equations, the scalar modulation instability in photonic crystal fibers is investigated. The evolution of the pump, Stokes and anti-Stokes waves along the fiber as well as the conversion efficiency for two cases, with and without Raman effect, are studied. The effect of anti-Stokes seed and the pump depletion on the evolution of S...
متن کاملImpact of Fourth-Order Dispersion Coefficient on the Gain Spectrum and the Saturation Behavior of One-Pump Fiber Optical Parametric Amplifiers
In this paper, the gain spectrum and the saturation behavior of one-pump fiber optical parametric amplifiers (1-P FOPAs) are investigated by taking into account the fourth-order dispersion coefficient b4 in the analysis. The results show that it is necessary to consider b4 in the analysis when the wavelength difference between the signal and pump waves is large enough and/or whenever the pump w...
متن کاملFiber-Based Optical Parametric Amplifiers and Their Applications
An applications-oriented review of optical parametric amplifiers in fiber communications is presented. The emphasis is on parametric amplifiers in general and single pumped parametric amplifiers in particular. While a theoretical framework based on highly efficient four-photon mixing is provided, the focus is on the intriguing applications enabled by the parametric gain, such as all-optical sig...
متن کاملImpact of Input Pump Profile on the Gain Spectrum and the Saturation Behavior of One-Pump Fiber Optical Parametric Amplifiers
In this article, the impact of input pump profile on the gain spectrum as well as the saturation behavior of one-pump fiber optical parametric amplifiers (FOPAs) is investigated. Since in practical circumstances, pump sources used for FOPAs have Lorentz-Gaussian profile instead of Gaussian, a more realistic case is considered for simulating FOPAs in this article. The results of simulations for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008